Attribute-based Credentials and Partial Identities for a more Privacy Friendly Internet

Ochrana dát a súkromia v cloudových službách (Normy & technológie pre riadenie a IT prevádzku)

Bratislava
Bratislava, 2013-02-21

Kai Rannenberg (Kai.Rannenberg@m-chair.net)
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt, Germany
www.m-chair.net

A research project funded by the European Commission’s 7th Framework Programme
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
Identity Management (IdM)
An early approach

„Fear not, for I have redeemed you; I have called you by name: you are mine.”
[Isaiah 43:1]

„Neboj sa, ja som ťa vykúpil, povolal som ťa tvojím menom, si môj.”
[Izaiáš 43:1]

„Μη φοβου· διοτι εγω σε ελυτρωσα, σε εκαλεσα με το ονομα σου· εμου εισαι“
[Ησαιαν 43:1]

„No temas, porque yo te he redimido, te he llamado por tu nombre; mío eres tú.“
[Isaías 43:1]

„Fürchte dich nicht, denn ich habe dich erlöst; ich habe dich bei deinem Namen gerufen; du bist mein!“
[Jesaja 43,1]
Typical federated architecture for Identity Management (IdM)

Identity Service Provider (IdSP)

Relying Party (RP)

1. request access
2. policy
3. token request
4. token response
5. token

User
Privacy (and security) issues of typical federated IdM architectures

Identity Service Provider (IdSP)

IdSP usually learns about RP via token request.

IdSP learns time of access & attributes requested.

Relying Party (RP)

RP gets to know values of the tokens and thus too much of the user's identity.

1. request access
2. policy
3. token request
4. token response
5. token

User
Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem

Attribute Based Credentials

The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective

Mobile Platforms & Privacy-ABCs

Conclusions & Outlook
Identity Management and Overidentification

Identity Service Provider (IdSP)

Relying Party (RP)

RP gets to know values of the tokens and thus too much of the user’s identity.

1. request access
2. policy
3. token request
4. token response
5. token

User
Identity Management (IdM)
2 sides of a medal with enormous economic potential

- **Organisations** aim to sort out
 - User Accounts in different IT systems
 - Authentication
 - Rights management
 - Access control

- **People** live their life
 - in different roles (professional, private, volunteer)
 - using different identities (pseudonyms): email accounts, SIM cards, eBay trade names, chat names, 2ndLife names, …)

- **Unified identities** help to
 - ease administration
 - manage customer relations

- **Identity management systems**
 - ease single-sign-on by unified accounts
 - solve the problems of multiple passwords

- **Differentiated identities** help to
 - protect
 - privacy, especially anonymity
 - personal security/safety
 - enable reputation building at the same time

- **Identity management systems**
 - support users using role based identities
 - help to present the “right” identity in the right context
Identity Management (IdM)
2 sides of a medal with enormous economic potential

- **People** live their life
 - in different roles (professional, private, volunteer)
 - using different identities (pseudonyms): email accounts, SIM cards, eBay trade names, chat names, 2ndLife names, …)

- **Differentiated identities** help to
 - protect
 - privacy, especially anonymity
 - personal security/safety
 - enable reputation building at the same time

- **Identity management systems**
 - support users using role based identities
 - help to present the “right” identity in the right context

- **Organisations** aim to sort out
 - User Accounts in different IT systems
 - Authentication
 - Rights management
 - Access control

- **Unified identities** help to
 - ease administration
 - manage customer relations

- **Identity management systems**
 - ease single-sign-on by unified accounts
 - solve the problems of multiple passwords
Partial Identities needed

Legend:
- Identity of Alice
- Partial Identity of Alice

Based on [Clauß, Köhntopp 2001]
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
The “Calling Home” Problem

Identity Service Provider (IdSP)

- Request access
- Policy
- Token request
- Token response
- Trust

Relying Party (RP)

User

IdSP usually learns about RP via token request.

IdSP learns time of access & attributes requested.
Identity Assurance
4 Entities and multiple names

Requester
(user, requesting entity, assuring entity, ...)

Assurance Token Provider
(credential provider, identity (service) provider, ...)

Assurance Token (pw, credential, identifier, ID, identity, ...)

Relying Party
(service provider, relying entity, ...)

Relying Party
(service provider, relying entity, ...)

Assurance Token Provider
(credential provider, identity (service) provider, ...)

Requester
(user, requesting entity, assuring entity, ...)

Assurance Token (pw, credential, identifier, ID, identity, ...)

Relying Party
(service provider, relying entity, ...)

Assurance Token Provider
(credential provider, identity (service) provider, ...)

Requester
(user, requesting entity, assuring entity, ...)

Assurance Token (pw, credential, identifier, ID, identity, ...)

Relying Party
(service provider, relying entity, ...)

Assurance Token Provider
(credential provider, identity (service) provider, ...)

Requester
(user, requesting entity, assuring entity, ...)

Assurance Token (pw, credential, identifier, ID, identity, ...)

Relying Party
(service provider, relying entity, ...)

Assurance Token Provider
(credential provider, identity (service) provider, ...)
The 4 Entities and their relations

Requester

Assurance Token

Relying Party

Assurance Token Provider
The “Identity Provider” Model
“Calling Home”

Requester

Assurance Token (reference)

Relying Party

Assurance Token Provider ("Identity Provider")

Google

Facebook
STORK European eID PEPS Triple “Calling Home”

Requester

Assurance Token Provider ("Identity Provider")

Gateway

Home Country of Assurance Token Provider

Relying Party

Gateway

Home Country of Relying Party
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
Attribute Based Credentials (privacy-ABCs)

- Certifying **relevant attributes**
- Token issuance and presentation **unlinkable**
 - Rather “coins” (that cannot be distinguished) than “bank notes” (that have a serial number)
- Users can disclose (minimal) **subsets** of the encoded claims
 - To respond to unanticipated requests of RPs
 - Without invalidating the token integrity
 - E.g. Certificate for birth date -> Claim for being over 21
- Two major **approaches and technologies**
 - U-Prove (Credentica -> Microsoft)
 - Idemix (IBM)
Two approaches for privacy-ABCs

Blind Signatures

- U-Prove
 - Brands, Paquin et al.
 - Discrete Logs, RSA, ...

Zero-Knowledge Proofs

- Idemix (Identity Mixer)
 - Damgard, Camenisch & Lysyanskaya
 - Strong RSA, pairings (LMRS, q-SDH)
Identity Definition in ISO/IEC IS 24760-1:2011 to reduce the risk of overidentification

- **Identity** (partial identity):
 - Set of **attributes** related to an **entity**
 - From “A Framework for Identity Management” (ISO/IEC 24760)
 - Part 1: Terminology and concepts (IS:2011)
 - Part 2: Reference framework and requirements (WD)
 - Part 3: Practice (WD)
Partial Identities

Legend:
- Identity of Alice
- Partial Identity of Alice

Based on [Clauß, Köhntopp 2001]
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
ABC4Trust

Objectives

- A common, unified architecture for ABC systems to enable
 - Comparing their respective features
 - Combining them on common platforms
 - “Lock-In” free usage of ABC systems

- Open reference implementations of selected ABC systems

- Deployments in actual production enabling
 - Minimal disclosure
 - Provision of anonymous feedback to a community to one is accredited as a member

- Relevant Standards
 - e.g. in ISO/IEC JTC 1/SC 27/WG 5 “Identity Management and Privacy Technologies”
ABC4Trust Partners

Johann Wolfgang Goethe-Universität Frankfurt, DE
Alexandra Institute AS, DK
Research Academic Computer Technology Institute, GR
IBM Research - Zurich, CH
Miracle A/S, DK
NSN Management International GmbH, DE
Technische Universität Darmstadt, DE
Unabhängiges Landeszentrum für Datenschutz, DE
Eurodocs AB, SE
CryptoExperts SAS, FR
Microsoft NV, BE
Söderhamn Kommun, SE
Project Workflow

Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
ABC4Trust Pilot Trial: Community Interaction

- School internal social network for communication among pupils, teachers, and personnel
- Provide trusted authentication while protecting anonymity
- Usability: make privacy technology understandable for non-technical users (e.g. pupils)

Norrtullskolan School
Söderhamn, Sweden
ABC4Trust Pilot Trial: Course Rating

- Course ratings conducted anonymously without lecturers knowing participants’ identities
- Conduct polls based on attendance
- Issue multiple credentials (student cards, class attendance)
- Verify with anonymous proofs towards “untrusted” infrastructure

Computer Technology Institute
Patras, Greece
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
The ABC4Trust Architecture

Objectives

- Abstraction of concepts of privacy-ABCs & unification of features
- A common unified architecture
 - That is independent of the specific technologies
 - Federation of privacy-ABC Systems based on different technologies
 - Interoperability between different privacy-ABC technologies

- Avoid technology lock-in
- Raise trust in privacy-ABC technologies

- Users will be able to
 - obtain credentials for many privacy-ABC technologies and
 - use them on the same hardware and software platforms
 - without having to consider which privacy-ABC technology has been used.

- Service providers and Identity Service Providers will be able to
 - adopt whatever privacy-ABC technology best suits their needs.
The ABC4Trust Architecture

- Entities and Interactions
- High-level features and concepts of privacy-ABCs
- System architecture and components for handling privacy-ABCs
- Component APIs
- XML specification of all data formats
The ABC4Trust Architecture Elements

- Entities and Interactions
- High-level features and concepts of privacy-ABCs
- System architecture and components for handling privacy-ABCs
- Component APIs
- XML specification of all data formats
The ABC4Trust Architecture Elements

- Entities and Interactions
- High-level features and concepts of privacy-ABCs
- System architecture and components for handling privacy-ABCs
- Component APIs
- XML specification of all data formats
Entities and Interactions

Issuer → Credential Revocation

Credential Issuance

User → Presentation Token

Revocation info retrieval

Revocation Authority → Revocation info retrieval

Verifier → Token Inspection

Inspector → Presentation Token

Presentation Token → Token Inspection
The ABC4Trust Architecture

- Entities and Interactions
- **High-level features and concepts of privacy-ABCs**
- System architecture and components for handling privacy-ABCs
- Component APIs
- XML specification of all data formats
Features and concepts

- Credentials
 - List of attributes, encoding, etc.
- Presentation policies, presentation tokens
- User binding and device binding
- Issuance policies
- Pseudonyms
 - Verifiable, certified, scope-exclusive
- Inspection + revocation
Features and concepts

- **Credentials**
 - List of attributes, encoding, etc.

- **Presentation policies, presentation tokens**

- User binding and device binding

- Issuance policies

- Pseudonyms
 - Verifiable, certified, scope-exclusive

- Inspection + revocation
Presentation

- Presentation policy
 - Which (combination of) credentials from which issuer
 - Which attributes or attribute predicates to reveal

- Presentation token
 - *Description*: mechanism-agnostic revealed information
 - *Evidence*: mechanism-specific crypto blobs
 - Untraceable and unlinkable by default, traceable and linkable when so desired
<presentation-policy xmlns="http://abc4trust.eu/wp2/abcschemav1.0">
 <presentation-policy policy-uid="policy1" enforce-same-user-binding="true" enforce-same-device-binding="false">
 <message>
 <nonce>aDk3UEm2OTNjOT1cmZHQ210U0c</nonce>
 </message>
 <pseudonym alias="nym" scope="http://sweden.gov/poll0105" exclusive="true"/>
 <credential alias="id">
 <credential-spec-alternatives>
 <credential-spec-uid>urn:sweden:id</credential-spec-uid>
 </credential-spec-alternatives>
 <issuer-alternatives>
 <issuer-parameters-uid>urn:sweden:id:issuer</issuer-parameters-uid>
 </issuer-alternatives>
 <disclosed-attribute attribute-type="urn:sweden:id:city"/>
 </credential>
 <attribute-predicate function="urn:oasis:names:tc:xacml:1.0:function:date-less-than">
 <attribute credential-alias="id" attribute-type="urn:sweden:id:birthdate">
 <constant-value>1994-01-20</constant-value>
 </attribute-predicate>
 </attribute-predicate>
 </presentation-policy>
 </presentation-policy-alternatives>
</presentation-policy>
<?xml version="1.0" encoding="UTF-8"?>

 <PresentationTokenDescription PolicyUID="policy1" EnforceSameUserBinding="true" EnforceSameDeviceBinding="false">
 <Message>
 <Nonce>aDk3UEMz0TNj0T1cmZHQ210U0c=</Nonce>
 </Message>
 <Pseudonym Alias="nym" Scope="http://sweden.gov/poll0105" Exclusive="true">
 <PseudonymValue>MER2VXpyR0VaO51YXdVNHRISHI</PseudonymValue>
 </Pseudonym>
 <Credential Alias="id">
 <CredentialSpecUID>urn:sweden:id</CredentialSpecUID>
 <IssuerParametersUID>urn:sweden:id:issuer</IssuerParametersUID>
 <DisclosedAttribute AttributeType="urn:sweden:id:city">
 <AttributeValue>Söderhamn</AttributeValue>
 </DisclosedAttribute>
 <AttributePredicate Function="urn:oasis:names:tc:xacml:1.0:function:date-less-than">
 <Attribute CredentialAlias="id" AttributeType="urn:sweden:id:bdate"/>
 <ConstantValue>1994-01-20</ConstantValue>
 </AttributePredicate>
 </Credential>
 <CryptoEvidence> ... </CryptoEvidence>
 </PresentationTokenDescription>
</PresentationToken>
The ABC4Trust Architecture Elements

- Entities and Interactions
- High-level features and concepts of privacy-ABCs
- System architecture and components for handling privacy-ABCs
- Component APIs
- XML specification of all data formats
ABC4Trust architecture components - high-level view

- All mechanism-agnostic components of Privacy-ABC systems included
ABC-Engine Components

User
- User Side Deployment
 - Identity Selector
 - Policy-Credential Matcher
 - Evidence Generation Orchestration
 - Credential Manager
 - Crypto Engine (e.g. Idemix, U-Prove)

Verifier
- Verifier Side Deployment
 - Policy-Token Matcher
 - Evidence Verification Orchestration
 - Token Manager
 - Crypto Engine (e.g. Idemix, U-Prove)
Legal considerations for the ABC4Trust architecture

To limit processing to necessary data is supported by Privacy-ABCs:

- **Selective disclosure** of attribute-values out of a certificate and
- **Inspection** allowing conditional disclosure of data once this is really necessary.
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem

- Attribute Based Credentials

- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective

- Mobile Platforms & Privacy-ABCs

- Conclusions & Outlook
Considering
- the views of the respective stakeholders (Multilateral Security)
- separations of domains that had been natural “before”

Enabling users to manage their identities and IDs

Frameworks and reference architectures
- Along the value chain (with appropriate incentives)
- For business processes and applications
- For new communities and networks

Globally standardized (e.g. in ISO/IEC JTC 1/SC 27/WG 5 “Identity Management and Privacy Technologies”)
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
Principles for designing Assurance Tokens

- Enabling the assurance token holder to influence
 - character and degree of identification and
 - amount of identification information
- Enabling communication
 - between assurance token holder and assurance token
- Enabling the assurance token to protect itself:
 - Ability to verify the controller by e.g. extra channel
 - A portfolio of communication mechanisms for redundancy
 - Sufficient access control towards relevant data (which platform?)
 - Enough processing power for complex operations
Smartphones vs. Smartcards as Assurance Tokens

- Better Usability
 - Credential selection
 - Security advisor

- More processing power

- More Communication Channels
 - Can be used for authentication/check of context (e.g. reader, time, certificates)

- Secure Storage?

- Trusted Environment?
 - Trusted User Interface
 - Trusted Platform?
Secure Equipment (20th century): Avoiding Threats from Trojan Horses

Wallet with private key and signature function
Personal Terminals (early 21st century)

A popular vision: Personal Security Assistants

- **Storing personal data**
 - Addresses, calendars
 - Money, keys
 - Preferences, ...

- **Performs sensitive processes**
 - Decoding of confidential messages
 - Signature creation
 - Contract confirmation

- **Assists negotiations**
 - Documents which are accepted by other parties
 - Methods of payment
 - Reachability
Challenges for Personal Terminals

- **Usability**
 - Portability
 - Good visibility of important information ("new network")
 - Adequate representation of the functionality

- **Protection from**
 - Unauthorized access to stored data
 - Manipulation of the functionality (e.g. "Trojan Horses")
 - Denial-of-Service attacks

- **Trust (of non-experts)**
 - Does the equipment what it shall do?
 - How (much) can I trust it?
Personal Security Assistants Platforms?

- Personal digital assistants
- Watches
- Mobile phones
- Smartphones
- Tablets
- ...

ABC4TRUST
Agenda

- Some Privacy Problems in Identity Management and Assurance
 - Identity Management and Overidentification
 - Identity Assurance and the “Calling Home” Problem
- Attribute Based Credentials
- The ABC4Trust Project
 - The Trials
 - The Architecture
 - ABC4Trust in Perspective
- Mobile Platforms & Privacy-ABCs
- Conclusions & Outlook
Conclusions & Outlook

- ICT and related services are coming ever closer to people.
- A more privacy friendly Internet requires:
 - Partial Identities and Identifiers
 - Minimum Disclosure
 - Attribute Based Credentials
 - Strong Sovereign Assurance Tokens (smart cards, mobile devices?)

- Kai.Rannenberg@m-chair.net
- www.m-chair.net
- www.abc4trust.net
- www.fidis.net
- www.primelife.eu
- www.prime-project.eu
- www.picos-project.eu
Back-Up
Identity Theft (?)

What's wrong with him now?

He thought someone had stolen his identity...

But they decided they didn't want it.